Parallel Pricing Algorithms for Multi--Dimensional Bermudan/American Options using Monte Carlo methods

نویسندگان

  • Mireille Bossy
  • Françoise Baude
  • Viet Dung Doan
  • Abhijeet Gaikwad
  • Ian Stokes-Rees
چکیده

In this paper we present two parallel Monte Carlo based algorithms for pricing multi–dimensional Bermudan/American options. First approach relies on computation of the optimal exercise boundary while the second relies on classification of continuation and exercise values. We also evaluate the performance of both the algorithms in a desktop grid environment. We show the effectiveness of the proposed approaches in a heterogeneous computing environment, and identify scalability constraints due to the algorithmic structure. Key-words: Multi–dimensional Bermudan/American option, Parallel Distributed Monte Carlo methods, Grid computing. ∗ INRIA, OASIS † INRIA, TOSCA ‡ Dept. Biological Chemistry & Molecular Pharmacology, Harvard Medical School Algorithmes de Pricing parallèles pour des Options Bermudiennes/Américaines multidimensionnelles par une méthode de Monte Carlo Résumé : Dans ce papier, nous présentons deux algorithmes de type Monte Carlo pour le pricing d’options Bermudiennes/Américaines multidimensionnelles. La premiere approche repose sur le calcul de la frontière d’exercice, tandis que la seconde repose sur la classification des valeurs d’exercice et de continuation. Nous évaluons les performances des algorithmes dans un environnement grille. Nous montrons l’efficacité des approches proposées dans un environnement hétérogène. Nous identifions les contraintes d’évolutivité dues à la structure algorithmique. Mots-clés : options Bermudiennes/Américaines multidimensionnelles, Méthodes de Monte Carlo paralléles, Grid computing. Parallel Pricing Algorithms for Multi–Dimensional Bermudan/American Options 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Primal-Dual Simulation Algorithm for Pricing Multi-Dimensional American Options

This paper describes a practical algorithm based on Monte Carlo simulation for the pricing of multi-dimensional American (i.e., continuously exercisable) and Bermudan (i.e., discretelyexercisable) options. The method generates both lower and upper bounds for the Bermudan option price and hence gives valid confidence intervals for the true value. Lower bounds can be generated using any number of...

متن کامل

Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options

T paper describes a practical algorithm based on Monte Carlo simulation for the pricing of multidimensional American (i.e., continuously exercisable) and Bermudan (i.e., discretely exercisable) options. The method generates both lower and upper bounds for the Bermudan option price and hence gives valid confidence intervals for the true value. Lower bounds can be generated using any number of pr...

متن کامل

Pricing High-Dimensional Bermudan Options using Variance-Reduced Monte Carlo Methods

We present a numerical method for pricing Bermudan options depending on a large number of underlyings. The asset prices are modeled with exponential time-inhomogeneous jump-diffusion processes. We improve the least-squares Monte Carlo method proposed by Longstaff and Schwartz introducing an efficient variance reduction scheme. A control variable is obtained from a low-dimensional approximation ...

متن کامل

Improved Lower and Upper Bound Algorithms for Pricing American Options by Simulation

This paper introduces new variance reduction techniques and computational improvements to Monte Carlo methods for pricing American-style options. For simulation algorithms that compute lower bounds of American option values, we apply martingale control variates and introduce the local policy enhancement, which adopts a local simulation to improve the exercise policy. For duality-based upper bou...

متن کامل

A Parallel Quasi-Monte Carlo Approach to Pricing American Options on Multiple Assets

In this paper, we develop parallel algorithms for pricing American options on multiple assets. Our parallel methods are based on the low discrepancy (LD) mesh method which combines the quasi-Monte Carlo technique with the stochastic mesh method. We present two approaches to parallelize the backward recursion step, which is the most computational intensive part of the LD mesh method. We perform ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2010